Nucleation Behavior of Polypropylene with a Nan-O-Sil Additive Dr. Previn Shah, Rheoplast Associates

James Browne Applications Scientist TA Instruments 159 Lukens Drive New Castle, DE 19720 (302) 427-4015 email: jbrowne@tainstruments.com

Samples and Request

- 3 Samples of Polypropylene
 - 1) Neat PP
 - 2) Nan-O-Sil Powder
 - 3) Nan-O-Sil Master Batch

Request is to determine nucleation effect of added Nan-O-Sil on polypropylene specifically in nucleation geometry and effect on activation energy.

- Nucleation effect will be evaluated with isothermal differential scanning calorimetry.
- Sample is heated significantly higher than the equilibrium melting temperature and cooled rapidly to a temperature where crystallization occurs. Area under the curve is evaluated as fraction crystallized as a function of time. Experiment is repeated at temperatures so that 5 repetitions approximately 10 °C apart are obtained.

• Equation 1

$$X(t) = \frac{\int_{t_0}^{t_{\infty}} \left(\frac{dH_C}{dt}\right) dt}{\Delta H_C}$$

 Equation 1 describes the volume fraction crystallized as a function of time.

- The resultant curve represented by X(t) is evaluated using two mathematical models:
- 1) Avrami

$$X(t) = 1 - \exp(-k_a t^{n_a})$$

$$\log(-\ln(1-X(t))) = \log k_a + n_a \log t$$

- Equation 2 and 3
- Equations 2 and 3 are the Avrami and linearized Avrami equations
- The Avrami parameter n is related to the nucleation geometry
 - n=1 rod like growth, single dimension
 - n=2 planar growth, two dimensions
 - n=3 spherical growth, 3 dimensions
 - k = Avrami rate constant

2) Malkin Model

$$X(t) = 1 - \frac{C_0 + 1}{C_0 + \exp(C_1 t)})$$

- Equation 4 Malkin Equation
- Malkin parameter C₀ is related to nucleation growth it is the proportional to the ratio of secondary nucleation growth (propagation) to primary growth
- Malkin Parameter C₁ is a rate constant that is proportional to total nucleation.

3) Malkin relation to Avrami parameters k and n

$$X(t) = 1 - \frac{C_0 + 1}{C_0 + \exp(C_0 t)})$$

where
$$C_0 = 4n - 4$$

$$C_1 = \ln(4n - 2) \left(\frac{k}{\ln(2)}\right)^{1/n}$$

Data calculated from Avrami parameters:

• Equation 5 t_{1/2}
$$t_{1/2} = \left(\frac{\ln 2}{k}\right)^{1/n}$$

• Equation 6 tau $\tau = \frac{1}{t_{1/2}}$

- 4) Calculation of Activation Energy Effect of nucleation can be measured by comparing activation energy of non-nucleated samples to nucleated samples.
- The general equation used to calculate Activation energy is:

$$\Psi_{T_c} = \Psi_0 \exp(-\Delta E / RT)$$

- Equation 7
- where Ψ can be
 - k
 - k^{1/n}
 - $-C_{1}$

- ΔE = Crystallization Activation Energy
- T = Temperature (K)
 - R = Gas Constant

- Polypropylene containing a nucleator will show some unique characteristics including:
 - Increased crystallization temperature upon dynamic cooling
 - Avrami geometric exponent (n) of around 2
 - Decreased Malkin C₀ constant Malkin C₀ is directly proportional to the ratio of secondary nucleation to primary nucleation.
 - Lower crystallization activation energy
 - Higher rate constants, lower values of $t_{1/2}$ (higher τ)
 - Obvious differences in heat flow and fraction crystallized with respect to time

Experimental: Results – Survey Scans Cooling at 10 C / minute (Non-Isothermal)

Experimental: Results – Survey Scans Cooling at 10 C / minute (Non-Isothermal)

- Cooling scans show more than one crystallization peak in the neat PP and the Nano –Sil Powder. The PP Nano-sil master batch shows only one peak. The split peaks are indicative of poor dispersion of the nucleating agent.
- The neat PP appears to contain a nucleating agent⁺, so we will include a reference on non-nucleated polypropylene in the isothermal study.

[†]Polypropylene that has a significantly raised crystallization temperature is often times said to be 'nucleated'.

Experimental

- Isothermal Crystallization at 132 and 134 °C
- Data will be fit using the Malkin and Avrami models
- Activation energy will be determined by running the samples at 5 heating rates so that the temperature range is ~ 10 K apart.

Comparison of Isotherms at 132 C

Example of Malkin Curve Fit

Example of Avrami Fit

Results: Isothermal Comparison at 132 C

Sample	Neat	Control	Master batch	Powder
∆H (J/g)	43.51	99.71	99.55	54.85
t _{1/2} from DSC	0.66	10.23	6.28	0.064
1/T (K-1)	0.00246889	0.0024689	0.0024689	0.0024689
Malkin Fit				
C0	7.359	35.867	31.910	23.732
C1	2.460	0.334	0.479	4.324
n	1.753	2.659	2.583	2.397
k	0.819	0.001	0.004	1.376
t _{1/2} (min)	0.909	10.872	7.357	0.751
τ (S ⁻¹)	1.100	0.092	0.136	1.331
1/n ln(k)	-0.114	-2.524	-2.138	0.133
Avrami Fit				
n	1.736	2.511	2.439	2.259
k	0.837	0.002	0.005	1.346
t _{1/2} (min)	0.897	10.813	7.314	0.745
τ (S ⁻¹)	1.114	0.092	0.137	1.342
1/n ln(k)	-0.103	-2.527	-2.140	0.132

CTA

Comparison of Isotherms at 134 C

Results: Isothermal Comparison at 134 C

Sample	Neat	Control	Master batch	Powder
∆H (J/g)	54.89	133.8	133.8	133.8
t _{1/2} from DSC	1.38	103.2	111.5	55.78
1/T (K-1)	0.0024572	0.0024572	0.0024572	0.0024572
Malkin Fit				
C0	4.933	36.573	40.549	11.013
C1	0.942	0.157	0.244	2.149
n	1.580	2.671	2.739	1.954
k	0.222	0.000	0.000	0.490
t _{1/2} (min)	2.055	23.309	15.366	1.194
τ (S ⁻¹)	0.487	0.043	0.065	0.837
1/n ln(k)	-0.952	-3.286	-2.866	-0.365
Avrami Fit				
n	1.593	2.537	2.578	1.896
k	0.225	0.000	0.001	0.506
t _{1/2} (min)	2.028	23.187	15.297	1.180
τ (S ⁻¹)	0.493	0.043	0.065	0.847
1/n ln(k)	-0.937	-3.288	-2.870	-0.359

Results: Isothermal Crystallization

- Neat PP Sample
 - Appears to contain nucleating agent. This is evident from
 - Low Avrami exponent (n)
 - Low Malkin C₀
 - High rate constants (k and C₁) compared to the polypropylene control
 - Higher value of tau
 - Nucleator is poorly dispersed in this sample (split peaks in non-isothermal crystallization curve)
- Polypropylene Control not nucleated, used for comparison in this work.
 - Typical Avrami ~3
 - Relatively high Malkin
 - Lower non-isothermal crystallization temperature

- Nan-O-Sil Powder
 - Sample is nucleated.
 - Low Avrami exponent (n)
 - Low Malkin C₀
 - High rate constants (k and C₁) compared to the polypropylene control
 - Higher value of tau
 - Nucleator is also poorly dispersed in this sample (split peaks in non-isothermal crystallization curve)
- Nan-O-Sil Master batch
 - Sample crystallizes significantly slower than either the Nan-O-Sil powder or the neat polypropylene sample.
 - Has similar characteristics as the polypropylene control.

Experimental: Comparison of Isothermal Crystallization Runs at 134 °C

Experimental: Isothermal Crystallization Runs to Determine ΔE (Activation Energy)

- Isothermal crystallization experiments are carried out at 4-5 different temperatures that span about 10 K if possible. This ensures that the calculation of ΔE is from a reasonably linear area of the functions described in Equation 7.
- For calculations of ΔE , $\psi = 1/n \ln k$.
- For the isoconversional method, $\psi = dX(t) / dt$

Experimental: Results Isothermal Crystallization – Neat PP

Heat Flow as a Function of Time Under Isothermal Conditions

Experimental: Results Isothermal Crystallization – Nan-O-Sil Master Batch

Heat Flow as a Function of Time Under Isothermal Conditions

Experimental: Results Isothermal Crystallization – Nan-O-Sil Powder

Heat Flow as a Function of Time Under Isothermal Conditions

Experimental: Results Isothermal Crystallization – Polypropylene Control

Heat Flow as a Function of Time Under Isothermal Conditions

Results: Kinetic Data for Neat PP Sample

Т°С	132.8	136.6	138.6	140.5	142.52
ΔH (J/g)	50.42	62.03	75.7	66.46	52.99
t _{1/2} from DSC	1.5	2.43	4.57	12.4	19.11
1/T (K-1)	0.00246366	0.0024403	0.002429	0.0024173	0.002405755
Malkin Fit					
C0	7.101	8.134	2.206	8.004	29.320
C1	1.029	0.690	0.190	0.127	0.151
n	1.736	1.800	1.317	1.793	2.529
k	0.184	0.078	0.048	0.004	0.000
t _{1/2} (min)	2.146	3.355	7.566	18.093	22.852
τ (S ⁻¹)	0.466	0.298	0.132	0.055	0.044
1/n ln(k)	-0.975	-1.414	-2.302	-3.100	-3.274
Avrami Fit					
n	1.727	1.771	1.366	1.770	2.389
k	0.190	0.083	0.044	0.004	0.000
t _{1/2} (min)	2.118	3.313	7.499	17.859	22.710
τ (S ⁻¹)	0.472	0.302	0.133	0.056	0.044
1/n ln(k)	-0.962	-1.405	-2.283	-3.090	-3.276

Results: Kinetic Data for Nan-O-Sil Master Batch

Т°С	127.8	130.8	133.7	135.6	137.59
∆H (J/g)	89.6	96.41	108.4	118.3	103.5
t _{1/2} from DSC	3.46	4.7	13.5	29.3	51.14
1/T (K-1)	0.00249401	0.0024759	0.002458	0.0024464	0.00243463
Malkin Fit					
C0	46.337	27.891	38.739	49.971	66.269
C1	1.107	0.578	0.243	0.126	0.086
n	2.827	2.498	2.709	2.877	3.067
k	0.020	0.008	0.000	0.000	0.000
t _{1/2} (min)	3.503	5.882	15.243	31.297	49.137
τ (S -1)	0.285	0.170	0.066	0.032	0.020
1/n ln(k)	-1.383	-1.919	-2.859	-3.571	-4.014
Avrami Fit					
n	2.663	2.368	2.549	2.708	2.896
k	0.025	0.011	0.001	0.000	0.000
t _{1/2} (min)	3.489	5.838	15.174	31.188	49.048
τ (S ⁻¹)	0.287	0.171	0.066	0.032	0.020
1/n ln(k)	-1.387	-1.919	-2.863	-3.575	-4.019

Results: Kinetic Data for Nan-O-Sil Powder

Т°С	132.1	131.7	136.7	139.6	141.52
ΔΗ (J/g)	59.22	63.01	66.85	71.5	68.98
t _{1/2} from DSC	0.61	1.36	2.46	7.85	11.05
1/T (K-1)	0.00246792	0.0024701	0.0024402	0.002423	0.002411556
Malkin Fit					
C0	30.749	13.185	9.265	10.743	23.989
C1	5.037	1.650	0.765	0.229	0.241
n	2.559	2.052	1.865	1.941	2.403
k	1.774	0.249	0.081	0.006	0.001
t _{1/2} (min)	0.693	1.648	3.164	11.097	13.497
τ (S ⁻¹)	1.444	0.607	0.316	0.090	0.074
1/n ln(k)	0.224	-0.678	-1.348	-2.596	-2.755
Avrami Fit					
n	2.406	1.968	1.819	1.881	2.258
k	1.702	0.265	0.087	0.008	0.002
t _{1/2} (min)	0.688	1.631	3.125	10.971	13.402
τ (S ⁻¹)	1.453	0.613	0.320	0.091	0.075
1/n ln(k)	0.221	-0.675	-1.341	-2.590	-2.758

Results: Kinetic Data for PP Control

Т°С	121.9	124.9	126.8	129.7	131.7
∆H (J/g)	66.09	74.15	82.7	83.5	83.49
t _{1/2} from DSC	1.69	2.89	5.56	8.01	11.16
1/T (K-1)	0.00253139	0.0025125	0.0025003	0.0024823	0.002470051
Malkin Fit					
C0	38.756	39.867	42.438	42.260	46.352
C1	2.271	1.286	0.652	0.456	0.344
n	2.709	2.728	2.769	2.766	2.827
k	0.184	0.038	0.005	0.002	0.001
t _{1/2} (min)	1.633	2.904	5.818	8.313	11.262
τ (S ⁻¹)	0.612	0.344	0.172	0.120	0.089
1/n ln(k)	-0.626	-1.201	-1.893	-2.250	-2.551
Avrami Fit					
n	2.567	2.579	2.613	2.601	2.669
k	0.194	0.045	0.007	0.003	0.001
t _{1/2} (min)	1.642	2.892	5.793	8.276	11.218
τ (S ⁻¹)	0.609	0.346	0.173	0.121	0.089
1/n ln(k)	-0.638	-1.204	-1.897	-2.254	-2.555

CTA

Crystallization Activation Energy Summary

	Neat PP	PP_Nano_MB	PP_Nano_Powder	Polypropylene
	ΔE kJ mol-1	ΔE kJ mol-1	ΔE kJ mol-1	
Malkin	-364.8	-385.2	-388.1	-265.8
Avrami Non Linear	-366.3	-385.6	-382.0	-264.8
Isoconversional				
X(t)				
0.01	-406.75	-372.0	-386.1	-243.3
0.02	-414.01	-413.4	-387.0	-196.2
0.03	-403.30	-406.2	-374.6	-229.2
0.04	-400.31	-429.9	-368.4	-254.1
0.05	-395.51	-426.8	-367.9	-237.0
0.06	-392.86	-420.9	-372.3	-258.5
0.07	-390.69	-404.9	-364.4	-243.7
0.08	-392.74	-408.7	-363.7	-235.5
0.09	-392.75	-412.9	-371.2	-255.2
0.1	-381.95	-412.7	-361.8	-245.4
0.2	-368.07	-387.5	-363.9	-254.1
0.3	-356.67	-375.9	-369.7	-253.3
0.4	-360.00	-376.3	-376.5	-255.2
0.5	-349.54	-377.6	-386.2	-257.9
0.6	-341.78	-368.0	-392.3	-264.3
0.7	-323.04	-375.3	-403.8	-270.4
0.8	-310.77	-367.3	-403.8	-273.5
0.9	-392.14	-358.2	-454.7	-312.8

Comparison of Activation Energy – Isoconversional Method

Experimental: Results - Interpretation of Data

Neat PP

- Sample is nucleated with a ∆E value of ~ -365 kJ / mol compared to the control PP value of -285 kJ / mol
- Rate constants are consistently higher than the control
- Avrami exponent 'n' is generally closer to 2 except in once case. This is likely due to poor dispersion.
- Malkin C₀ is consistently lower except in one case due to dispersion. This indicates nucleation is predominantly propagation of new crystal sites.
- Nan-O-Sil Powder
 - Sample shows activation energy of ~ -385 kJ / mol lower than the Neat PP and significantly lower than the polypropylene reference.
 - Rate constants are significantly higher
 - Avrami exponent 'n' is close to 2 in most cases but does approach get higher in one case due to dispersion issues.
 - Malkin C₀ is consistently lower except in one case due to dispersion

Experimental: Results - Interpretation of Data

- Control Polypropylene
 - Typical behavior of polypropylene with a Avrami exponent 'n' of ~ 3 and relatively high Malkin C₀ constant.
 - ΔE in typical range ~ -280 kJ / mol for non-nucleated PP
- Nan-O-Sil Master batch
 - Sample shows activation energy of ~ -385 kJ / mol which represent a significant lowering of activation energy
 - Despite the low ΔE, the rate constants are lower. This is due to a Avrami exponent 'n' value of ~ 3. Nucleation efficiency in PP seems to be optimal at 'n' = 2.
 - Malkin C₀ is relatively high indicating the predominant nucleation mechanism is propagation of existing crystal domains
 - Master batch behaves like some mineral fillers (talc for example) giving a lower activation energy and some improvement in cycle time, but with a spherical geometry.
 - Typically nucleators will have optimal concentrations levels.

Conclusions

- The Q 2000 DSC is the optimal tool for assessing nucleator performance in polypropylene and other plastics. This is due to several factors including:
 - Tzero baseline performance a flat baseline is critical in isothermal studies, and the baseline performance is superior.
 - Reliable autosampler
 - Ease of calibration
- The Nan-O-Sil additive has a significant nucleation effect on polypropylene as indicated by the lowering of activation energy, improved rate constants, change in Avrami geometric exponent 'n' and lower value of Malkin C₀.
- All of this should result in improved cycle times in processing PP.

Thank You

TA Instruments

The World Leader in Thermal Analysis, Rheology, and Microcalorimetry

www.tainstruments.com

